Package: regmhmm 1.0.0
regmhmm: 'regmhmm' Fits Hidden Markov Models with Regularization
Designed for longitudinal data analysis using Hidden Markov Models (HMMs). Tailored for applications in healthcare, social sciences, and economics, the main emphasis of this package is on regularization techniques for fitting HMMs. Additionally, it provides an implementation for fitting HMMs without regularization, referencing Zucchini et al. (2017, ISBN:9781315372488).
Authors:
regmhmm_1.0.0.tar.gz
regmhmm_1.0.0.zip(r-4.5)regmhmm_1.0.0.zip(r-4.4)regmhmm_1.0.0.zip(r-4.3)
regmhmm_1.0.0.tgz(r-4.4-x86_64)regmhmm_1.0.0.tgz(r-4.4-arm64)regmhmm_1.0.0.tgz(r-4.3-x86_64)regmhmm_1.0.0.tgz(r-4.3-arm64)
regmhmm_1.0.0.tar.gz(r-4.5-noble)regmhmm_1.0.0.tar.gz(r-4.4-noble)
regmhmm_1.0.0.tgz(r-4.4-emscripten)regmhmm_1.0.0.tgz(r-4.3-emscripten)
regmhmm.pdf |regmhmm.html✨
regmhmm/json (API)
# Install 'regmhmm' in R: |
install.packages('regmhmm', repos = c('https://henryleongstat.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/henryleongstat/regmhmm/issues
Last updated 12 months agofrom:0a0de5ef1e. Checks:OK: 1 NOTE: 8. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 02 2024 |
R-4.5-win-x86_64 | NOTE | Nov 02 2024 |
R-4.5-linux-x86_64 | NOTE | Nov 02 2024 |
R-4.4-win-x86_64 | NOTE | Nov 02 2024 |
R-4.4-mac-x86_64 | NOTE | Nov 02 2024 |
R-4.4-mac-aarch64 | NOTE | Nov 02 2024 |
R-4.3-win-x86_64 | NOTE | Nov 02 2024 |
R-4.3-mac-x86_64 | NOTE | Nov 02 2024 |
R-4.3-mac-aarch64 | NOTE | Nov 02 2024 |
Exports:backwardcompute_joint_statecompute_loglikelihoodcompute_stateforwardforward_backwardHMMHMM_C_rawHMM_one_stepIRLS_EMplot.HMMprint.HMMrHMMrHMM_one_stepsimulate_HMM_data
Dependencies:clicodetoolscpp11foreachglmnetglmnetUtilsglueigraphiteratorslatticelifecyclemagrittrMASSMatrixpkgconfigRcppRcppArmadilloRcppEigenrlangshapesurvivalvctrs